Electron Paramagnetic Resonance of Cu²⁺ in KHCO₃ Single Crystals

F. Köksal, İ. Kartal, and B. Karabulut

Physics Department, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey

Reprint requests to Prof. F. Köksal, Fax: +90 362 4576081

Z. Naturforsch. **54 a,** 177–179 (1999); received January 9, 1999

The electron paramagnetic resonance spectra of Ct^{2^+} doped KHCO₃ single crystals were studied at room temperature. The results indicate a substitutional entrance of the Ct^{2^+} ions in place of the magnetically inequivalent K^+ sites. The charge compensation is supposed to be fulfilled by proton vacancies. The hyperfine lines were well resolved and the ⁶⁵Cu hyperfine coupling tensors were also found. The ground state of Cu^{2^+} indicates the dominance of the $d_{x^2-y^2}$ orbital and, therefore, elongation of the polyhedron, similar to a lengthened octahedron.

Key words: EPR; Cu²⁺; Potassium Bicarbonate; Crystal Field; Substitution; Impurity.